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Abstract--.4 conjugate heat transfer problem of a second-grade viscoelastic fluid past a plate fin was 
studied. Governing equations, including heat conduction equation of a fin, and continuity equation, 
momentum equation and energy equation of a second-grade fluid, were analyzed by a combination of a 
series expansion method, the similarity transformation and a second-order accurate finite-difference 
method. Solutions of a stagnation flow (b = 1.0) at the fin tip and a flat-plate flow (/I = 0) on the fin 
surface were obtained by a generalized Falkner-Skan flow derivation. These solutions were used to iterate 
with the heat conduction equation of the fin to obtain distributions of the local convective heat transfer 
coefficient and the fin temperature. Ranges of dimensionless parameters, the Prandtl number (Pr), the 
elastic number (E) and the conduction<onvection coefficient (N,) are from 0.1 to 100, 0.001 to 0.3, and 
0.5 to 2.0, respectively. Results indicated that elastic effect in the flow can increase the local heat transfer 
coefficient and enhance the heat transfer of a fin. Also, same as results from Newtonian fluid flow and 
conduction. analysis of a fin, a better heat transfer is obtained with a larger N, and Pr. 0 1997 Elsevier 

Science Ltd. 

‘I. INTRODUCTION 

It is standard practice in the conventional heat con- 
duction analysis to assume that the local forced con- 
vective heat transfer coefficient on the surfaces of a fin 
is a constant. However, evidences in the literature have 
demonstrated that the local convective heat transfer 
coefficient can experience substantial variations along 
the surfaces of a fin. These variations may be caused 
by non-uniformities in both velocity and temperature 
distributions in the flow adjacent to the surfaces of a 
fin. Basically, the convective heat transfer coefficient 
on the surfaces of a fin is established by a highly 
coupled interaction between thermal states of the fin 
and the surrounding flow. The forced-driven and tem- 
perature-dependent nature of the interaction on inter- 
faces cause the jlow and the temperature fields to 
be specific according to the temperature distribution 
along the surfaces of a fin. 

Since the flow and temperature fields have a strong 
influence on the convective heat transfer coefficient 
that, in turn, strongly affects the fin temperature dis- 
tribution, the tightness of the coupling is apparent. 
Any first-principle analysis of a fin must deal with the 
energy conservation equation of the fin, the equations 
of mass, momemum and energy conservation in the 
surrounding fluid. Even in the coupling, apparent 
variations in the local thermophysical properties and 
the fluid flow temperature distributions can still be 
calculated by analyzing the coupled equations of the 
flow and the fin. This means that the flow and tem- 

perature fields in the fluid and the temperature dis- 
tribution along the surfaces of a fin must be solved 
simultaneously in a heat transfer problem of a fin/fluid 
system. Energy equations of the fin and the flow are 
coupled by conditions of a temperature continuity and 
a heat flux continuity at the solid-fluid interface in 
the analysis of this conjugate problem. It is worth 
mentioning that these continuity conditions make the 
present conjugate problem solvable. A special feature 
of the conjugate analysis is that the magnitude and 
distribution of the convective heat transfer coefficient 
on the surfaces of a fin are not prescribed in advance, 
but are the outcome of the solution. 

In order to include non-Newtonian fluids in con- 
ventional studies of conjugate problems, conjugate 
heat transfer analysis of a fin in a second-grade visco- 
elastic fluid flow is the major concern of the present 
investigation. The problem considered a fin that trans- 
fers heat to or from a surrounding second-grade fluid 
flow by the forced convection. A friction-reduction 
phenomenon of some dilute polymer solutions or 
polymer fluids (some of these fluids, which can be 
formulated by the model used in the present study, 
are termed second-grade fluids) is a well-known fact 
in the studies of non-Newtonian fluid flows [l]. Thus, 
if we use a non-Newtonian fluid as the coolant of 
the cooling systems or heat exchangers might greatly 
reduce the required pumping power. Therefore, fun- 
damental analysis of the flow field of non-Newtonian 
fluids in a boundary layer adjacent to a fin or an 
extended surface is very important, and is also an 
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NOMENCLATURE 

A,, A2 kmematrc tensors 
b body force [N mp3] 

: 
elastic parameter 
zero-order dimensionless velocity 
function 

fi first-order dimensionless velocity 
function 

90 zero-order dimensionless temperature 
function 

91 first-order dimensionless temperature 
function 

h local heat transfer coefficient 
[w me2 K-‘1 

6 dimensionless local heat transfer 
coefficient 

k thermal conductivity of the fluid 
w m-’ K-l] 

kr fin thermal conductivity of the fin 
[w m-’ K-‘1 

; 
wedge angle index 
characteristic length or fin length [m] 

NCC conduction<onvection parameter 
NM Nusselt number 
P, P* pressures [N m-‘1 
Pr Prandtl number 
4 local heat transfer rate of the fin [w] 
Re Reynolds number 
ReL Reynolds number, u,L/v 
Rex Reynolds number ; u,x/v 
T stress tensor 
T, flow temperature at the outer edge of 

the boundary layer [K] 
Tr fin temperature at x [K] 
To fin base temperature [K] 

TCC fluid temperature [K] 
TT constant related to the wedge angle 

and temperature gradient at the wall 
TTO zero-order part of TT 
TTl first-order part of TT 
t fin half thickness [m] 
u, edge velocity [m s-l] 
u* characteristic velocity 
u, v horizontal and vertical flow velocities 

[m s-l] 
U, V dimensionless horizontal and vertical 

flow velocities 
V velocity vector 
x dimensionless coordinate (x/L) 
x, y horizontal and vertical coordinates [m] 
X, Y dimensionless horizontal and vertical 

coordinates. 

Greek symbols 
%,2 first and second normal stress 

coefficients 
B shape factor 

z. 
dimensionless similarity variable 
dimensionless temperature 
(T- TJI(Tr- TJ 

Qf dimensionless fin temperature 
U’- TJ/(To- Tel 

P dynamic viscosity [kg s-’ m-‘1 
V kinematic viscocity [m’ SC’] 
5 dimensionless local parameter 

: 
density of the fluid Fg m-‘1 
potential function 

* stream function. 

essential part in the area of the fluid dynamics and 
heat transfer. Understanding boundary layer flows 
and heat transfer of non-Newtonian fluids has become 
important in recent years. Srivatsava [2], and Rajes- 
wari and Rathna [3] studied the non-Newtonian fluid 
flow near a stagnation point. Mishra and Panda [4] 
analyzed the behavior of second-grade viscoelastic 
fluids under the influence of a side-wall injection in an 
entrance region of a pipe flow. Rajagopal et al. [5] 
studied a Falkner-Skan flow field of a second-grade 
viscoelastic fluid. Massoudi and Ramezan [6] studied 
a wedge flow with suction and injection along walls of 
a wedge by the similarity method and finite-difference 
calculations. Hsu et al. [7] also studied the flow and 
heat transfer phenomena of an incompressible second- 
grade viscoelastic fluid past a wedge with suction or 
injection. An excellent review of boundary layers in 
nonlinear fluids was recently written by Rajagopal[8]. 

These are related studies to the present investigation 
about second-grade fluids. The viscoelastic nature of 
a second-grade fluid is found in some dilute polymer 
solutions or in polymer fluids. These fluids exhibit 
both the viscous and elastic characteristics. The same 
as Newtonian fluids, the viscous property is due to the 
transport phenomenon of the fluid molecules. The 
elastic property is due to the chemical structure and 
configuration of the polymer molecule. The term ‘elas- 
tic’ means ‘that the viscoelastic fluid ‘remembers’ 
where it was. Macromolecules act as small rubber 
bands and tend to snap back when the external forces 
are removed and, hence, produce ‘elastic recoil’ of the 
fluid. Detailed information of viscoelastic fluid can be 
found in books of rheology. 

The system to be analyzed in the present study is a 
flat plate fin submerged in a second-grade viscoelastic 
fluid flow. Due to the coupling nature between the fin 
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researchers substituted eqn (1) into momentum equa- 
tions 

p$V = divT+pb (4) 

and assumed that the fluid is incompressible and the 
flow is in isochoric motion to obtain 

divV = 0. (5) 

For the steady, two-dimensional laminar flow under 
conservative body force b, the following were defined : 

.*=.-(,,,+-@I+,@ (6) 

b=V@. (7) 

From Bernoulli’s principle and the substitution of the 
edge velocity u,, the following was obtained : 

(8) 

Consequently, one can eliminate the pressure term in 
the momentum equation and obtain the dimensionless 
boundary-layer equations 

g+g=o (9) 

au au du, a2U 
U~+V~=u~dX+~ 

+E[$Jgq+gg+vy (10) 

where E = u,ReJpL2, Re, is the Reynolds number 
and L is the characteristic length. The corresponding 
dimensionless parameters are 

The dimensionless boundary conditions are 

Y=O u=o 
v=o 

Y-+ cc) u+ U,(x). (12) 

By using the stream function $ one can define 

&!!! 
ay’ 

V=-% 
ax (13) 

a* a=* a* a=* --_-~ 
ayaxay axdY= 

a=$ a'+ ati av _~~____ 
aY2aYZax 1 axay4 . 

The boundary conditions are written as 

y=o !3!=0 a* 
ay 9 ax’0 

a* Y+ cc Fy’ U,(y). 

(14) 

(15) 

The viscoelastic model is applicable for diluted 
polymer fluids under retarded-motion expansion. So 
one can assume E c-c 1 and expand the stream function 
t+k with respect to E as 

$ = $o(K Y)+-W,(X> r>+ . ..+E”$n(K r). (16) 

Substituting eqn (16) into eqns (14) and (15), and 
introducing the similar transformation parameters 

m-f- 1 (3 I’* 
?= 2 

$m- I)/2 y (17) 

one can obtain a set of nonlinear ordinary differential 
equations from the concepts of perturbation tech- 
nique and power series expansion. The equation of 
the zeroth-order term, fO, is of the form 

f~+.h~+B[1-(fb)=1 = 0 (19) 

where /I = 2m/(m+ 1) is the shape factor of the wedge. 
Also from the potential flow theory, the edge velocity 
U, is expressed as 

u, = X”. 

The boundary conditions are then written as 

(20) 

fo(O> = 0 

f&(O) = 0 

“f-h(a) -+ 1. (21) 

Similarly, by assuming 

fi(4 = ;;;“;i ( > 
II-= 

$,X(]-3m)P (22) 

and substitute into eqn (10) to get 
and performing the similarity transformation, one can 
also obtain a nonlinear ordinary differential equation 
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~,,+~~l -_LJ;,f;’ - (3m - l)fbYl 
g,(LV=O)=O, s1(5,1-~)=0. (33) 

L L One can solve eqns (30)-(33) by neglecting terms with 
+3m-1 

Tfif’+(3m-l)fbfd”- 
[-derivatives (a local similar concept) to obtain tem- 
perature distributions. The heat flux on the surface of 
the fin is 

m+l 
- 2f0 fo"" = 0 (23) aT 

= h(T,- T,) (34) 
for the first-order term, fi. The corresponding bound- 

qw = -k&O 

ary conditions of the equation are and with some manipulations the local Nusselt num- 

f,(O)=f’,(O)=0, f;(rl+Co)+o. (24) ber can be expressed as 

In the present study, we simply set /? = 0 (m = 0) and 
fi = 1.0 (m = l.O), respectively, to represent a flat- 
plate flow and a Istagnation flow. Consequently, the 
velocity distribution can be obtained by solving eqns 
(19)-(21) and (23)-(24) with numerical methods. (In 
conjugate analysis, these equations are solved with 
energy equations of the fluid and the fin ; detail steps 
are described in the latter part of this section.) 

By introducing the non-dimensional temperature : 

The corresponding local heat transfer convective heat 
coefficient can be written as 

h = -(k,x) (~~‘2Re:i2$~V_,. (36) 

The constant, related to the wedge angle and the tem- 
perature gradient in eqns (35) and (36), may be ex- 
pressed as 

T-T, e=----- 
Tr Te 

the non-dimensional energy equation (neglecting the 
viscous dissipation) in the boundary layer is written as 

ae ae 1 a28 
u13X+vay=z$jz or expanded according to the order of E as 

with the boundary conditions 

e(x,o) = 1, e(x, 00) = 0. (27) 

To utilize the concept of the local similarity trans- and 

TTO = -e>“2!$i,=o (38) 

formation, one can define 

(=xmp’ TT1 = -Ey2gI,_o. (39) 
(28) 

and assume that the non-dimensional energy equation 
can be expanded according to E as 

0 =90(L’1:)+Egr(5,V)+ ~‘.+E”gll(4,V). (29) 

Finally, by substituting eqn (29) into eqn (26), the 
zero-order equation with respect to E and cor- 
responding boun’dary conditions are 

The formulation of the first analysis principle for 
forced convection along a fin involves the energy con- 
servation for the fin and the boundary layer equations 
for the flow. For a slender fin, ample evidence based 
on finite difference solutions shows that a one-dimen- 
sional model is adequate [26]. The fin temperature at 
any x location serves as the wall temperature for the 
adjacent fluid and is denoted as Tf(x). The energy 
equation for the fin may be written in two different 
forms, depending on how the coupled-fin/boundary- 
layer problem is solved. The method used here 
involves a succession of consecutive iteration solutions 

The first-order equation and boundary conditions are for the fin and the boundary-layer flow, with the 

?+.J1 .G@ 
> 

sequence continued until there is no change (within a 
preset tolerance) between the nth iteration and the 
(n - 1) iteration. Within each iteration information 

$$+O.@$ 
must be transferred from the boundary-layer solution 

= I+. which is current for that period and be used as input 
to update the fin solution. This information may be 

2 .ago 

> 

either in the form of the local heat flux g(x) or the 

+k-wf;2 z (32) local forced convective heat transfer coefficient h(x). 
Both q(x) and h(x) are available from the current 
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wedge-type boundary layer solution. The fin energy 
equation can be expressed as 

01 

d2 T,ldx’ = q/k,t (40) 

d2 Tf/dX2 = (h/k,t)(T,- T,) (41) 

where kf and t are the thermal conductivity and the 
half thickness of the fin, respectively. For the solutions 
of either eqns (40) or (41) at a given cycle of the 
iterative procedures, h and q can be regarded as known 
quantities. 

At first glance, it appears advantageous to use eqn 
(40) rather than eqn (41) because it is easier to solve ; 
however, eqn (41) is employed in the solution scheme. 
The choice made was based on experience, which has 
shown that at any stage of an iterative cycle h is closer 
to the final converged result than q. Thus, eqn (41) is 
chosen to obtain rapid convergence of the iterative 
procedure, whereby this objective is satisfactorily ful- 
filled, as will be documented shortly. Equation (41) is 
recast in a dimensionless form by the substitutions 

X = x/L, Br = (Tf- T,)/(T,, -T,) (42) 

where To is the base temperature of the fin, so that 

d26r/dXZ = AN,@, (43) 

with boundary conditions 

&=I (X= l), kfg+hB,=o (x=0). (44) 

The exact solution of the above differential equation 
and boundary conditions (a conventional solution 
with constant h and used only for comparison) is 

e 

’ 

= cash ,/%& - (hlakj sinh mx 

cosh&L - (h/J-h*Nk) sinh JhTN,L 
(45) 

where N, is the conduction<onvection number and 
is defined as 

NC, = (kL/kJ ReL12 

The quantity h is a dimensionless form of the local 
convective heat transfer coefficient and can be written 
as 

& = (hL/k)Re, ‘12. (47) 

By the way, the Biot number is not an appropriate 
parameter in the present problem because the heat 
transfer coefficient varies with x and is also unknown 
prior at the beginning of the computations. 

These conjugate ordinary differential equations are 
discretized by a second-order accurate central differ- 
ence method, and a computer program has been 
developed to solve these equations. To avoid errors in 
discretization and calculation processing and to 
ensure the convergence of numerical solutions, some 
conventional numerical procedures have been applied 
in order to choose a suitable grid size (A? = 0.05-O. l), 

a suitable rl range and 5 or X positions, etc., and a 
direct gauss elimination method with Newton’s 
method [27] is used in the computer program to obtain 
solutions of these difference equations. Calculation 
steps of the entire conjugate system are as follows : 

(1) 
(2) 

(3) 

(4) 

Estimate the fin temperature distribution T,(x). 
Solve flow fields [eqns (19), (21) (23)-(24) and 
(30)-(33)] and the local convective heat-transfer 
coefficient [eqn (47)] according to the local 
Prandtl number, elastic parameter, and the local 
fin temperature for both the stagnation flow 
(p = 1.0) and the flat-plate flow (B = 0) from the 
related equations. 
Solve the heat-conduction equation of the fin [eqn 
(43)] with the renewed local convective heat- 
transfer coefficient. 
Compute thermodynamic fluid properties from 
the fin temperature and free-stream temperature. 

The sequence 2 to 4 is repeated until an acceptable 
convergence for fin temperature has been reached. 
The conditions of continuity in the heat flux and tem- 
perature at the fluid-solid interface are then satisfied 
and all relevant heat transfer characteristics can be 
calculated. 

3. RESULTS AND DISCUSSION 

Comparisons between the exact solution and 
numerical solution obtained by the present numerical 
method for heat conduction in the fin with the con- 
vective heat transfer coefficient, h = 25 and 50, are 
shown in Figs 2 and 3, respectively. Results exhibited 
favorable agreement between both solutions, and also 
indicated that the finite difference method used in the 
present study is adequate. 

Many previous studies of conventional and con- 
jugate problems did not consider convective effects of 
the stagnation flow at the fin tip, but simply sub- 
stituted the convective condition by an adiabatic 
boundary condition. However, from the fin-flow con- 
figuration shown in Fig. 1, the heat transfer at the tip 
of the fin should not be ignored. It is important to 
include stagnation flow effects at the tip point of the 
fin in either conventional heat transfer problems or 
conjugate problems. 

A generalized Falkner-Skan flow derivation is used 
to analyze a stagnation flow (shape factor /l = 1 .O) at 
the fin tip and a flat-plate flow (/I = 0) on fin surfaces. 
A second-order accurate finite difference method is 
used to obtain solutions of these equations. Com- 
paring f;(O) and f;(O) to results of [5] at various 
values of p showed a good agreement and these values 
are listed in Table 1. Also, computed values of TTO 
at various values of Pr for flat-plate flow are consistent 
with Ref. [28], and are listed in Table 2. These tables 
indicated that the present results are correct, and the 
numerical method used is adequate. 

For the stagnation flow, self-similar solutions for 
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0.8 

0.7 F-D (NCC=O.5) + 

0.8 F-D (NCC=l .O) ??

‘* 0 0.5 F-D (NCC=2.0) o 

0.4 F-D (NCC35.0) x 

0.3 

0.2 

0.1 

n 
"0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 

X 

Fig,. 2. Fin temperature distributions computed from FDE and exact solution for h = 25.0. 

8.8 

0.7 F-D (NCC=O.S) + 

0.8 F-D (NCC=l .O) ??

cDLo.5 F-D (NCCx2.0) o 

0.4 F-D (NCG5.0) x 

0.3 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X 

Fig. 3. Fin temperature distributions computed from FDE and exact solution for h = 50.0. 

flow and temperature fields are obtained, and com- Figures 6 and 7, like Figs 4 and 5, illustrate the 
puted values of TT vs the elastic number E with the relationships among TT, Pr and E for the flat-plate 
Prandtl number Pr = 1.0, 10.0, 100.0 are shown in flow field (/3 = 0) at the location X = 0.1. A linear 
Fig. 4. Variations indicated that TT is linear pro- relationship between TT and E is shown in Fig. 6. 
portional to the elastic number E and values of TT Both Figs 6 and 7 indicate that values of TT are larger 
are larger with ,a larger Prandtl number. Also, vari- with a medium value of Pr. Variations of TT along 
ations in TT vs the Prandtl number with the elastic the flat plate with Pr = 1.0 and E = 0.1, 0.2, 0.3 are 
number E = 0.3, 0.1, 0.001 are shown in Fig. 5. Fig- shown in Fig. 8. A stronger local effect is shown at 
ures 4 and 5 all indicate that a larger temperature locations near the fin tip. The present local similar 
gradient is present with a larger elastic number and solution approaches self-similar behavior at locations 
the Prandtl number. X > 0.3. Numerical values of fb(O), gL(l,O), f;‘(O), 
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Table 1. fg and f;’ vs /I 

B 
fim Present 

Ref. [5] solution Errors 
f; (0) 
Ref. [5] 

Present 
solution Errors 

0.05 0.5311 0.5312 0.0001 0.8214 0.8278 0.0064 
0.10 0.5870 0.5871 0.000 1 0.5296 0.5279 0.0017 
0.20 0.6867 0.6869 0.0002 0.3009 0.2985 0.0024 
0.30 0.7748 0.7751 0.0003 0.1418 0.1401 0.0017 
0.40 0.8544 0.8548 0.0004 -0.0112 -0.0123 0.0011 
0.50 0.9277 0.9282 0.0005 -0.1708 -0.1717 0.0035 
0.60 0.9958 0.9965 0.0007 - 0.3409 -0.3419 0.0010 
0.80 1.1202 1.1211 0.0009 -0.7164 -0.7181 0.0017 
1.00 1.2326 1.2337 0.0011 - 1.1390 - 1.1420 0.0030 
1.20 1.3357 1.3371 0.0014 - 1.6064 -1.6112 0.0048 
1.60 1.5215 1.5234 0.0019 -2.6641 - 2.6744 0.0003 

Table 2. T7U vs Pr (B = 0.0) 

Pr 
TTO 

Ref. [28] 
TTO 

present Errors 

0.3 0.2148 0.2207 0.0059 
0.6 0.2770 0.2777 0.0007 

0.72 0.2955 0.2960 0.0005 
1.0 0.3321 0.3323 0.0002 
2.0 0.4223 0.4227 0.0004 
3.0 0.4850 0.4856 0.0006 
6.0 0.6133 0.6145 0.0012 

10.0 0.7281 0.7304 0.0013 
30.0 1.0517 1.0602 0.0085 
60.0 1.3255 1.3459 0.0204 

100.0 1.5718 1.6106 0.0388 

g’,(l, 0), 0’(&0), TTO, TTl and TT for stagnation 
flow field (1 = 1.0) and flat-plate flow field (/I = 0.0, 
5 = 2) vs Pr and E are listed in Tables 3-6, respec- 
tively. These values vs locations X for flat-plate flow 
(from local similar solution) are listed in Table 7. 

Variations in the local heat-transfer coefficient (h) 
along the fin with N,, = 0.5, 1.0, 1.5 and 2.0 are shown 
in Figs 9-12, respectively. Computations of the local 
heat transfer coefficient are made by combining a stag- 
nation flow at the fin tip and a flat-plate flow on side 
surfaces of the fin. Results show that the local heat 
transfer coefficient and heat transfer increase dra- 
matically near the fin tip. It also points out that using 
a stagnation flow at the fin tip is much closer to the 
physical situations of the present problem. The value 
of the conjugate approach is clearly demonstrated 
by using a stagnation flow as an end condition. In 
addition, these figures indicate that higher E values 
can enhance the heat transfer performance (higher 
local heat transfer coefficient) no matter how the N, 
varies. However, variations of NC, from 0.5 to 2.0 
have insignificant effects on the local heat transfer 
coefficient. 

The conjugate fin temperature distributions along 
the fin with E = 0.001, 0.01 and 0.1 are shown in Figs 
13-l 5, respectively. The tip temperature is lower and 

0 
I I 

0.05 0.1 0.15 0.2 0.25 0.3 
E 

Fig. 4. TTvs E for p = 1.0, Pr = 1.0, 10.0 and 100.0. 
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Beta=l.O 

(E=0.3 )+ 

(E=O.l )* 

(E=O.OOl)o 

0 / I 
0 10 20 30 40 50 60 70 80 90 100 

Pr 
Fig. 5. TTvs Pr for B = 1.0, E = 0.001,O.l and 0.3. 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 

E 

Fig. 6. TTvs Efor j? = 0.0, X= 0.1, Pr = 1.0, 10.0 and 100.0. 

temperature gradients along the fin are higher with 
larger values of IV,, and E. These figures again indicate 
that the elastic nature of the fluid and a higher con- 
ductivity of the fin material can enhance the heat 
transfer performance of the fin. 

4. CONCLUSION 
In the present study, a second-grade viscoelastic 

fluid flow has been introduced into analyses of a con- 
jugate heat transfer problem of conduction in a solid 
flat-plate fin and a forced convection in flow. The 

present conjugate problem is a hybrid system of the 
ordinary convective problem with a constant wall tem- 
perature. A local heat transfer coefficient is obtained 
from numerical solutions. Other features in the study 
included are a generalized Falkner-Skan flow deri- 
vation, and a stagnation flow field at fin tip and a flat- 
plate flow on fin surfaces. 

Numerical results in the present study indicate that 
elastic effect E in the flow can increase the local heat 
transfer coefficient and enhance the heat transfer of a 
fin. Also, the same as the results from Newtonian fluid 
flow and conduction analysis of a fin, a better heat 
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Fig. 8. TTvsXfor/I= 0.0, Pr = l.O,E=O.l, 0.2and0.3. 
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Table 3. TT, TTO and TTl vs Pr for stagnation flow field (B = 1.0, E = 0.001) 

Pr fzc0:1 A(O) T7U f;(o) 57; (0) TTl W(O) TT 

0.1 
0.2 
0.3 
0.5 

-0.7 
1.0 
5.0 

10.0 
20.0 
30.0 
50.0 

100.0 

1.2337 - 0.2442 0.2442 
1.2337 -0.3033 0.3033 
1.2337 -0.3538 0.3538 
1.2337 -0.4344 0.4344 
1.2337 -0.4972 0.4972 
1.2337 -0.5723 0.5723 
1.2337 - 1.0524 1.0524 
1.233~7 - 1.3578 1.3578 
1.233~7 - 1.7521 1.7521 
1.2337 -2.0378 2.0378 
1.2337 - 2.4759 2.4759 
1.2337 - 3.2688 3.2688 

-1.1420 - 10.6862 
-1.1420 - 10.6584 
-1.1420 - 10.6312 
- 1.1420 - 10.5802 
-1.1420 - 10.5346 
- 1.1420 - 10.4759 
- 1.1420 - 10.0690 
-1.1420 -9.8073 
-1.1420 -9.4972 
- 1.1420 -9.2988 
-1.1420 -9.0380 
-1.1420 - 8.6760 

10.6862 - 0.2549 0.2549 
10.6584 -0.3139 0.3139 
10.6312 -0.3645 0.3645 
10.5802 -0.4450 0.4450 
10.5346 -0.5077 0.5077 
10.4759 -0.5828 0.5828 
10.0690 - 1.0625 1.0625 
9.8073 - 1.3677 1.3677 
9.4972 - 1.7616 1.7616 
9.2988 -2.0471 2.0471 
9.0380 -2.4850 2.4850 
8.6760 - 3.2775 3.2775 

Table 4. TT, TTO and TTl vs Pr flat-plate flow field (/I = 0, E = 0.001, X = 0.5, [ = 2) 

Pr fi @I -- 
0.1 0.4696 
0.2 0.4696 
0.3 0.46!)6 
0.5 0.46!,6 
0.7 0.46!)6 
1.0 0.46!)6 
5.0 0.46!)6 

10.0 0.46!)6 
20.0 0.46!)6 
30.0 0.46136 
50.0 0.46126 

100.0 0.4696 

sm TTO 

-0.2424 0.1714 
-0.2789 0.1972 
-0.3121 0.2207 
-0.3686 0.2607 
-0.4145 0.2931 
- 0.4699 0.3323 
-0.8170 0.5777 
- 1.0329 0.7304 
- 1.3061 0.9235 
- 1.4993 1.0602 
- 1.7868 1.2634 
-2.2778 1.6106 

f; (0) s; (0) TTl W(O) TT 

5.1602 - 18.5369 13.1075 -0.2610 0.1845 
5.1602 - 30.2570 21.3949 -0.3092 0.2186 
5.1602 -45.2937 32.0275 -0.3574 0.2527 
5.1602 - 74.8492 52.9264 -0.4435 0.3136 
5.1602 -98.3691 69.5574 -0.5129 0.3627 
5.1602 - 124.9733 88.3695 -0.5949 0.4207 
5.1602 -270.1608 191.0325 - 1.0871 0.7687 
5.1602 -312.8194 221.1967 - 1.3457 0.9516 
5.1602 -320.7817 226.8269 - 1.6269 1.1504 
5.1602 -312.1334 220.7116 -1.8115 1.2809 
5.1602 -292.7731 207.0219 - 2.0795 1.4705 
5.1602 -260.2552 184.0282 -2.5381 1.7947 

Table 5. 0’, TTO and TTl vs E for stagnation flow field (/3 = 1.0, Pr = 1.0) 

E fb ((V sm TTO f; (0) s; (0) TTl P(O) TT 

0.001 1.2337 -0.5723 0.5723 - 1.142 
0.003 1.2337 -0.5723 0.5723 - 1.142 
0.005 1.2337 -0.5723 0.5723 - 1.142 
0.008 1.2337 -0.5723 0.5723 - 1.142 
0.010 1.2337 -0.5723 0.5723 -1.142 
0.030 1.2337 -0.5723 0.5723 - 1.142 
0.050 1.2337 -0.5723 0.5723 -1.142 
0.080 1.2337 -0.5723 0.5723 - 1.142 
0.100 1.2337 -0.5723 0.5723 -1.142 
0.150 1.2337 -0.5723 0.5723 -1.142 
0.200 1.2337 -0.5723 0.5723 -1.142 
0.300 1.2337 -0.5723 0.5723 - 1.142 

- 10.4759 10.4759 -0.5828 0.5828 
- 10.4759 10.4759 -0.6037 0.6037 
- 10.4759 10.4759 -0.6247 0.6247 
- 10.4759 10.4759 -0.6561 0.6561 
- 10.4759 10.4759 -0.6770 0.6770 
- 10.4759 10.4759 -0.8866 0.8866 
- 10.4759 10.4759 - 1.0961 1.0961 
- 10.4759 10.4759 - 1.4104 1.4104 
- 10.4759 10.4759 - 1.6199 1.6199 
- 10.4759 10.4759 -2.1437 2.1437 
- 10.4759 10.4759 - 2.6675 2.6675 
- 10.4759 10.4759 -3.7151 3.7151 
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Table 6. Field TT, TTO and TTI vs E flat-plate flow (B = 0.0, Pr = 1.0, X = 0.5, r = 2) 

E fS (0) sb (0) TTO f;(o) s; 69 TTl B’(O) TT 

0.001 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 - 0.5949 0.4207 
0.003 0.4696 -0.4699 0.3323 5.1602 - 124.9733 88.3695 -0.8449 0.5974 
0.005 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 - 1.0948 0.7741 
0.008 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 - 1.4697 1.0393 
0.010 0.4696 -0.4699 0.3323 5.1602 - 124.9733 88.3695 - 1.7197 1.2160 
0.030 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 -4.2191 2.9834 
0.050 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 -6.7186 4.7508 
0.080 0.4696 -0.4699 0.3323 5.1602 - 124.9733 88.3695 - 10.4678 7.4019 
0.100 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 - 12.9673 9.1692 
0.150 0.4696 - 0.4699 0.3323 5.1602 - 124.9733 88.3695 - 19.2159 13.5877 
0.200 0.4696 -0.4699 0.3323 5.1602 - 124.9733 88.3695 - 25.4646 18.0062 
0.300 0.4696 -0.4699 0.3323 5.1602 - 124.9733 88.3695 -37.9619 26.843 1 

Table 7. Flat-plate flow field TT, TTO and TTl vs X at the wall (p = 0.0, Pr = 1 .O, E = 0.001) 

X 

0.04 0.4696 - 0.4699 0.3323 5.1602 
0.08 0.4696 - 0.4699 0.3323 5.1602 
0.10 0.4696 - 0.4699 0.3323 5.1602 
0.20 0.4696 - 0.4699 0.3323 5.1602 
0.30 0.4696 -0.4699 0.3323 5.1602 
0.40 0.4696 - 0.4699 0.3323 5.1602 
0.50 0.4696 -0.4699 0.3323 5.1602 
0.60 0.4696 - 0.4699 0.3323 5.1602 
0.70 0.4696 -0.4699 0.3323 5.1602 
0.80 0.4696 -0.4699 0.3323 5.1602 
0.90 0.4696 - 0.4699 0.3323 5.1602 
1 .oo 0.4696 -0.4699 0.3323 5.1602 

fn) sb (0) TTO(0) f;(o) s; (0) 

- 24.9832 
- 79.3257 
-90.1942 

-111.9311 
-119.1768 
- 122.7996 
- 124.9733 
- 126.4225 
- 127.4575 
- 128.2339 
- 128.8377 
- 129.3207 

TTl(0) @(O) TT(O) 

17.6658 - 0.4949 0.3500 
56.0917 - 0.5493 0.3884 
63.7769 -0.5601 0.3961 
79.1473 -0.5819 0.4114 
84.2707 -0.5891 0.4166 
86.8324 -0.5927 0.4191 
88.3695 - 0.5949 0.4207 
89.3942 - 0.5964 0.4217 
90.1261 -0.5974 0.4224 
90.6750 - 0.5982 0.4230 
91.1020 -0.5988 0.4234 
9 1.4436 - 0.5993 0.4237 

NCC=O.B 

(E = 0.10) + 
( E = 0.01) ??

(E =0.001)0 

: 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1 

X 

Fig. 9. Local convective heat transfer coefficient distributions for N, = 0.5, p = 0.0, and E = 0.001, 0.01 
and 0.1. 
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Fig. 10. Local convective heat transfer coefficient distributions for N, = 1.0, /3 = 0.0, and E = 0.001, 0.01 
and 0.1. 
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Fig. 11. Local convective heat transfer coefficient distributions for N, = 1.5, /3 = 0.0, and E = 0.001, 0.01 
and 0.1. 
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(E = 0.01) * 
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Fig. 12. Local convective heat transfer coefficient distributions for N, = 2.0, /? = 0.0, and E = 0.001, 0.01 
and 0.1. 
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Fig. 13. Conjugate fin temperature distributions for E = 0.001, N, = 0.5, 1.0, 1.5 and 2.0. 
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Fig. 14. Conjugate fin temperature distributions for E = 0.01, N, = 0.5, 1.0, 1.5 and 2.0. 
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Fig. 15. Conjugate fin temperature distributions for E = 0.1, N, = OS, 1.0, 1.5 and 2.0. 
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transfer is obtained with a larger N, and a larger Pr. 

With some modifications, the present method can be 
applied to the conjugate problems with other bound- 
ary-layer flow fields. 
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