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Abstract—A conjugate heat transfer problem of a second-grade viscoelastic fluid past a plate fin was
studied. Governing equations, including heat conduction equation of a fin, and continuity equation,
momentum equation and energy equation of a second-grade fluid, were analyzed by a combination of a
series expansion method, the similarity transformation and a second-order accurate finite-difference
method. Solutions of a stagnation flow ( = 1.0) at the fin tip and a flat-plate flow (8 = 0) on the fin
surface were obtained by a generalized Falkner—Skan flow derivation. These solutions were used to iterate
with the heat conduction equation of the fin to obtain distributions of the local convective heat transfer
coefficient and the fin temperature. Ranges of dimensionless parameters, the Prandtl number (Pr), the
elastic number (E) and the conduction—convection coefficient (N, are from 0.1 to 100, 0.001 to 0.3, and
0.5 to 2.0, respectively. Results indicated that elastic effect in the flow can increase the local heat transfer
coefficient and enhance the heat transfer of a fin. Also, same as results from Newtonian fluid flow and
conduction analysis of a fin, a better heat transfer is obtained with a larger N and Pr. © 1997 Elsevier
Science Ltd.

1. INTRODUCTION

It is standard practice in the conventional heat con-
duction analysis to assume that the local forced con-
vective heat transfer coefficient on the surfaces of a fin
is a constant. However, evidences in the literature have
demonstrated that the local convective heat transfer
coefficient can experience substantial variations along
the surfaces of a fin. These variations may be caused
by non-uniformities in both velocity and temperature
distributions in the flow adjacent to the surfaces of a
fin. Basically, the convective heat transfer coefficient
on the surfaces of a fin is established by a highly
coupled interaction between thermal states of the fin
and the surrounding flow. The forced-driven and tem-
perature-dependent nature of the interaction on inter-
faces cause the flow and the temperature fields to
be specific according to the temperature distribution
along the surfaces of a fin.

Since the flow and temperature fields have a strong
influence on the convective heat transfer coefficient
that, in turn, strongly affects the fin temperature dis-
tribution, the tightness of the coupling is apparent.
Any first-principle analysis of a fin must deal with the
energy conservation equation of the fin, the equations
of mass, momentum and energy conservation in the
surrounding fluid. Even in the coupling, apparent
variations in the local thermophysical properties and
the fluid flow temperature distributions can still be
calculated by analyzing the coupled equations of the
flow and the fin. This means that the flow and tem-

perature fields in the fluid and the temperature dis-
tribution along the surfaces of a fin must be solved
simultaneously in a heat transfer problem of a fin/fluid
system. Energy equations of the fin and the flow are
coupled by conditions of a temperature continuity and
a heat flux continuity at the solid—fluid interface in
the analysis of this conjugate problem. It is worth
mentioning that these continuity conditions make the
present conjugate problem solvable. A special feature
of the conjugate analysis is that the magnitude and
distribution of the convective heat transfer coefficient
on the surfaces of a fin are not prescribed in advance,
but are the outcome of the solution.

In order to include non-Newtonian fluids in con-
ventional studies of conjugate problems, conjugate
heat transfer analysis of a fin in a second-grade visco-
elastic fluid flow is the major concern of the present
investigation. The problem considered a fin that trans-
fers heat to or from a surrounding second-grade fluid
flow by the forced convection. A friction—reduction
phenomenon of some dilute polymer solutions or
polymer fluids (some of these fluids, which can be
formulated by the model used in the present study,
are termed second-grade fluids) is a well-known fact
in the studies of non-Newtonian fluid flows [1]. Thus,
if we use a non-Newtonian fluid as the coolant of
the cooling systems or heat exchangers might greatly
reduce the required pumping power. Therefore, fun-
damental analysis of the fiow field of non-Newtonian
fluids in a boundary layer adjacent to a fin or an
extended surface is very important, and is also an
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A, A, kinematic tensors
b body force [N m—]

E elastic parameter

fo zero-order dimensionless velocity
function

f first-order dimensionless velocity
function

9o zero-order dimensionless temperature
function

9 first-order dimensionless temperature
function

h local heat transfer coefficient
Wm™>K™]

h dimensionless local heat transfer
coefficient

k thermal conductivity of the fluid
Wm™' K]

ke fin thermal conductivity of the fin
[Wm™' K]

m wedge angle index

L characteristic length or fin length [m]

N,  conduction—convection parameter

Nu  Nusselt number

pressures [N m™?]

Pr Prandt]l number

q local heat transfer rate of the fin [W]

Re Reynolds number

Reynolds number, uL/v

Reynolds number ; u,x/v

T stress tensor

T, flow temperature at the outer edge of
the boundary layer [K]

T; fin temperature at x [K]

Ty fin base temperature [K]

NOMENCLATURE

T,  fluid temperature [K]

TT  constant related to the wedge angle
and temperature gradient at the wall

TTO0 zero-order part of TT

TT1 first-order part of TT

t fin half thickness [m]

U, edge velocity [m s™']

U*  characteristic velocity

horizontal and vertical flow velocities
[ms™']

dimensionless horizontal and vertical
flow velocities

A\ velocity vector

X dimensionless coordinate (x/L)

x,y horizontal and vertical coordinates [m]
X, dimensionless horizontal and vertical
coordinates.

Greek symbols
o, first and second normal stress

coefficients
B shape factor
n dimensionless similarity variable
0, dimensionless temperature
(T-T)T;—T))
0; dimensionless fin temperature

(Tf_ Te)/(TO_ Te)
u dynamic viscosity [kg s~
v kinematic viscocity [m?® s~
¢ dimensionless local parameter
p density of the fluid [kg m~?]
0]
Y

]m—I]

potential function
stream function.

essential part in the area of the fluid dynamics and
heat transfer. Understanding boundary layer flows
and heat transfer of non-Newtonian fluids has become
important in recent years. Srivatsava [2], and Rajes-
wari and Rathna [3] studied the non-Newtonian fluid
flow near a stagnation point. Mishra and Panda [4]
analyzed the behavior of second-grade viscoelastic
fluids under the influence of a side-wall injection in an
entrance region of a pipe flow. Rajagopal ef al. [5]
studied a Falkner—Skan flow field of a second-grade
viscoelastic fluid. Massoudi and Ramezan [6] studied
a wedge flow with suction and injection along walls of
a wedge by the similarity method and finite-difference
calculations. Hsu et al. [7] also studied the flow and
heat transfer phenomena of an incompressible second-
grade viscoelastic fluid past a wedge with suction or
injection. An excellent review of boundary layers in
nonlinear fluids was recently written by Rajagopal {8].

These are related studies to the present investigation
about second-grade fluids. The viscoelastic nature of
a second-grade fluid is found in some dilute polymer
solutions or in polymer fluids. These fluids exhibit
both the viscous and elastic characteristics. The same
as Newtonian fluids, the viscous property is due to the
transport phenomenon of the fluid molecules. The
elastic property is due to the chemical structure and
configuration of the polymer molecule. The term “elas-
tic’ means ‘that the viscoelastic fluid ‘remembers’
where it was. Macromolecules act as small rubber
bands and tend to snap back when the external forces
are removed and, hence, produce ‘elastic recoil’ of the
fluid. Detailed information of viscoelastic fluid can be
found in books of rheology.

The system to be analyzed in the present study is a
flat plate fin submerged in a second-grade viscoelastic
fluid flow. Due to the coupling nature between the fin
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and the fluid, the present analysis is different from
previous researches concerning forced convection
about a flat-plate fin. Those studies have dealt pri-
marily with a plate having prescribed convective heat
transfer coefficien: that yield similar or non-similar
solutions [9, 10]. There are some related conjugate
problems concerning a fin in a Newtonian flow, for
instance, a complete model study about the forced
convection on a rectangular fin has been investigated
by Sparrow and Chyu [11]; the effect of the Prandtl
number on the heat transfer from a rectangular fin
has been studied by Sunden [12]. Also, Luikov and
his co-workers solved the conjugate forced convective
problem along a flat-plate both numerically [13] and
analytically [14-16]. The analysis of the conjugate
heat transfer problem encompasses simultaneous
solutions for the heat conduction equation for the fin
and the boundary layer equations for the adjacent
fluid. These solutions are governed by two dimen-
sionless parameters, one of which is termed the con-
duction—convection number (N,) and the other, the
Prandtl number (Pr). Values of the conduction—con-
vection number are selected, in general, to cover the
entire range of feasible operating conditions and the
Prandt! number varies from 0.1 to 100.

The objective of the present analysis is to study the
conjugate heat transfer of a plate fin cooled or heated
by a high or low Prandtl number, second-grade vis-
coelastic fluid with various conduction—convection
parameters. An extension of previous works is then
performed to investigate the conjugate heat transfer
of a second-grade viscoelastic fluid past a plate fin. A
schematic diagram of the flat-plate fin is shown in Fig.
1 to illustrate the physical situation and symbols of
parameters needed for the analysis. Two types of flow
fields, a stagnation flow (flow at the fin tip) and a flat-
plate flow (flow on side surfaces of the fin), respec-
tively, are included. The Rivlin—Ericksen model for
grade-two fluids is used in the momentum equations.
The effects of dimensionless parameters, the Prandtl
number (Pr), the elastic number (E) and the con-
duction—convection coefficient (N,.) are main interests
of the study. Flow and temperature fields of the stag-
nation flow and the flat-plate flow are analyzed by
utilizing the boundary layer concept to obtain a set of
coupled momentum equations and energy equations.
A similarity transformation with wedge-type par-
ameters and a series expansion method are then used
to convert the nonlinear, coupled partial differential
equations to a set of nonlinear, decoupled ordinary
differential equations. In the present conjugate prob-
lem, these decoupled equations and the conduction
equation of the fin are then solved iteratively to obtain
the temperature distribution and the local convective
heat transfer coefficient along the fin by a second-
order accurate finite difference method. While the
difference form of the fin conduction equation has
previously been solved by either a relaxation pro-
cedure [17, 18] or a direct matrix-inverse method {19,
20] and the Runge—Kutta integration method [21, 22],
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Fig. 1. Physical model and coordinate system.

a simple and stable direct Gauss elimination method
[23] is used in the present study.

2. THEORY AND ANALYSIS

The Rivlin-Ericksen model [24] for a homo-
geneous, non-Newtonian, second-grade viscoelastic
fluid is used in the present wedge flow. The model
equation is expressed as follows:

T= —Pl+uA, +0, A, +a,A? (1)

where P is pressure, u is dynamic viscosity, «, and o,
are first and second normal stress coefficients which
are related to the material modulus, and represent
the elastic characteristic of the fluid. The kinematic
tensors A, and A, are defined as

A, = grad V+(grad V)T ¥))

d
Ar =T A +A (E@rad V) +(@Erad V)" A, (3)

where V are velocities and d/d¢ is the material time
derivative. As done by Rajagopal [25], the present
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researchers substituted eqn (1) into momentum equa-
tions

d
paV=divT+pb @

and assumed that the fluid is incompressible and the
flow is in isochoric motion to obtain

divV = 0. 0]

For the steady, two-dimensional laminar flow under
conservative body force b, the following were defined :

a 2
P p— <2a, + 53) (—”) +p® )
2 J\dy

b = V. N

From Bernoulli’s principle and the substitution of the
edge velocity u,, the following was obtained :

du, 10pP*

ox T T p o ®

Consequently, one can eliminate the pressure term in
the momentum equation and obtain the dimensionless
boundary-layer equations

ou v

a,+ﬁ,=0 ©9)
ou oU dUu, o*U
U(—a}ﬁ' Vﬁ= Uea+ﬁ£
0 02U oue*v ;U
+E[ﬁ(Uﬁ—2—>+ *a—YW-f-Vﬁ;} (10)

where E = o,Re; [pL?, Re, is the Reynolds number
and L is the characteristic length. The corresponding
dimensionless parameters are

v u,
V_f/: Rey, Ue—U*' an
The dimensionless boundary conditions are

Y=0 U=0
V=0

Yoo U-=UX). (12)

By using the stream function i one can define
oy oy
U=3r V=& (13)

and substitute into eqn (10) to get
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o Y Yty

0Y3XoY oOXay?

3y a [y By
tor +E[5§<5?F>
L0 Y WY

aY* aY*ex 0Xov*|

du.
=Uax

The boundary conditions are written as

1s)

The viscoelastic model is applicable for diluted
polymer fluids under retarded-motion expansion. So
one can assume E « 1 and expand the stream function
W with respect to E as

Y=y (X, N+ E) (X, N+ +EY, (X, V). (16)

Substituting eqn (16) into eqns (14) and (15), and
introducing the similar transformation parameters

1 1/2
7= (’"_;C_) xom-vizy a7
m+ 1\ ,
Joln) = (T) Yo X~ 2 (18)

one can obtain a set of nonlinear ordinary differential
equations from the concepts of perturbation tech-
nique and power series expansion. The equation of
the zeroth-order term, f;, is of the form

O Hfofi+ B -(f6)"1=0 19

where § = 2m/(m+ 1) is the shape factor of the wedge.
Also from the potential flow theory, the edge velocity
U, is expressed as

U, = X" (20)

The boundary conditions are then written as

fo(0) =0
fo(0) =0
So(0) > 1. e3))

Similarly, by assuming

9 \12
fl(’l)=(—> '/’1X(1—3m)/2 (22)

m+1

and performing the similarity transformation, one can
also obtain a nonlinear ordinary differential equation
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m+1 m+1 o
T fr+ T o= Gm=1)f o
3 "t
+ 0 i+CGm—1)fo fo
m+1
fo " _0 (23)

for the first-order term, f}. The corresponding bound-
ary conditions of the equation are

£10) =£10)=0, fi(n—>o0)—0.

In the present study, we simply set f§ = 0 (m = 0) and
B =1.0 (m=1.0), respectively, to represent a flat-
plate flow and a stagnation flow. Consequently, the
velocity distribution can be obtained by solving eqns
(19)—(21) and (23)—(24) with numerical methods. (In
conjugate analysis, these equations are solved with
energy equations of the fluid and the fin; detail steps
are described in the latter part of this section.)
By introducing the non-dimensional temperature :

T-T,
Tf—Te

24)

0= (25)

the non-dimensional energy equation (neglecting the
viscous dissipation) in the boundary layer is written as

06 00 1 &9

Usx Vv = prov (26)
with the boundary conditions
X, 0) =1, 6(X,0)=0 X))

To utilize the concept of the local similarity trans-

formation, one can define
E=x"" (28)

and assume that the non-dimensional energy equation
can be expanded according to E as

0 =gom+Eg, (&, m)+ -+ Eg. (&, n).

Finally, by substituting eqn (29) into eqn (26), the
zero-order equation with respect to E and cor-
responding boundary conditions are

29

9? go ago _ 2(m ) agO
Go&n=0=1 go(¢,n—>0)= (3D

The first-order equation and boundary conditions are

I (ﬁy1 3 0yu>
on? ¢
2m=1) ., . 9%
=or (m+1 oot 9¢
0
+(m— DL62§>(m
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91(&n=0)= (33)

One can solve eqns (30)—(33) by neglecting terms with
&-derivatives (a local similar concept) to obtain tem-
perature distributions. The heat flux on the surface of
the fin is

0, g.(¢,n—>w)=0.

aT
qw = —k—=

5 &)

=h(Tf_Te)

y=0
and with some manipulations the local Nusselt num-
ber can be expressed as

1\ 0
m_+_) Re;/Z_a_ (35)

Nu, = hx/k = —< 5 on

n=0

The corresponding local heat transfer convective heat
coefficient can be written as

12
he =t (%57) ReP

o (36)

n=0

The constant, related to the wedge angle and the tem-
perature gradient in eqns (35) and (36), may be ex-
pressed as

m+1\'? 60
T = — 37
( 2 ) nl,_o o7
or expanded according to the order of E as
m+ 1\ dg,
T7T0= ———] — 38
( 2 > (31’[ n=0 ( )
and
m+1\'"? g,
TTl = — | —— 39
< 2 ) ar’ 'l=0 ( )

The formulation of the first analysis principle for
forced convection along a fin involves the energy con-
servation for the fin and the boundary layer equations
for the flow. For a slender fin, ample evidence based
on finite difference solutions shows that a one-dimen-
sional model is adequate [26]. The fin temperature at
any x location serves as the wall temperature for the
adjacent fluid and is denoted as T{x). The energy
equation for the fin may be written in two different
forms, depending on how the coupled-fin/boundary-
layer problem is solved. The method used here
involves a succession of consecutive iteration solutions
for the fin and the boundary-layer flow, with the
sequence continued until there is no change (within a
preset tolerance) between the nth iteration and the
(n—1) iteration. Within each iteration information
must be transferred from the boundary-layer solution
which is current for that period and be used as input
to update the fin solution. This information may be
either in the form of the local heat flux g(x) or the
local forced convective heat transfer coefficient A(x).
Both g(x) and A(x) are available from the current
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wedge-type boundary layer solution. The fin energy
equation can be expressed as

d*Ty/dx* = g/kqt (40)

or

d*Ty/dx* = (hfk)(T;~T.) @D

where k; and ¢ are the thermal conductivity and the
half thickness of the fin, respectively. For the solutions
of either eqns (40) or (41) at a given cycle of the
iterative procedures, 2 and g can be regarded as known
quantities.

At first glance, it appears advantageous to use eqn
(40) rather than eqn (41) because it is easier to solve;
however, eqn (41) is employed in the solution scheme.
The choice made was based on experience, which has
shown that at any stage of an iterative cycle % is closer
to the final converged result than ¢. Thus, eqn (41) is
chosen to obtain rapid convergence of the iterative
procedure, whereby this objective is satisfactorily ful-
filled, as will be documented shortly. Equation (41) is
recast in a dimensionless form by the substitutions

X=x/L, b =(Ti—T)/(To—T.) “42)
where T}, is the base temperature of the fin, so that
d26y/dX? = AN6; (43)

with boundary conditions
dé;
=1 (X=1), kfa +h6;=0 (X=0). (44

The exact solution of the above differential equation
and boundary conditions (a conventional solution
with constant / and used only for comparison) is

cosh /AN x— (h/ /AN k) sinh /AN .x
O = 45)
cosh/AN.L— (h/./hN k)sinh./hN. L

where N is the conduction—convection number and
is defined as

Ncc = (kL/kf) Rell_/z . (46)

The quantity / is a dimensionless form of the local
convective heat transfer coefficient and can be written
as

h = (hL/k)Re. . @7

By the way, the Biot number is not an appropriate
parameter in the present problem because the heat
transfer coefficient varies with x and is also unknown
prior at the beginning of the computations.

These conjugate ordinary differential equations are
discretized by a second-order accurate central differ-
ence method, and a computer program has been
developed to solve these equations. To avoid errors in
discretization and calculation processing and to
ensure the convergence of numerical solutions, some
conventional numerical procedures have been applied
in order to choose a suitable grid size (An = 0.05-0.1),
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a suitable » range and ¢ or X positions, etc., and a
direct gauss elimination method with Newton’s
method [27] is used in the computer program to obtain
solutions of these difference equations. Calculation
steps of the entire conjugate system are as follows:

(1) Estimate the fin temperature distribution 7i(x).

(2) Solve flow fields [eqns (19), (21), (23)—(24) and
(30)—(33)] and the local convective heat-transfer
coefficient [eqn (47)] according to the local
Prandtl number, elastic parameter, and the local
fin temperature for both the stagnation flow
(B = 1.0) and the flat-plate flow (8§ = 0) from the
related equations.

(3) Solve the heat-conduction equation of the fin [eqn
(43)] with the renewed local convective heat-
transfer coefficient.

(4) Compute thermodynamic fluid properties from
the fin temperature and free-stream temperature.

The sequence 2 to 4 is repeated until an acceptable
convergence for fin temperature has been reached.
The conditions of continuity in the heat flux and tem-
perature at the fluid—solid interface are then satisfied
and all relevant heat transfer characteristics can be
calculated.

3. RESULTS AND DISCUSSION

Comparisons between the exact solution and
numerical solution obtained by the present numerical
method for heat conduction in the fin with the con-
vective heat transfer coefficient, # = 25 and 50, are
shown in Figs 2 and 3, respectively. Results exhibited
favorable agreement between both solutions, and also
indicated that the finite difference method used in the
present study is adequate.

Many previous studies of conventional and con-
jugate problems did not consider convective effects of
the stagnation flow at the fin tip, but simply sub-
stituted the convective condition by an adiabatic
boundary condition. However, from the fin-flow con-
figuration shown in Fig. 1, the heat transfer at the tip
of the fin should not be ignored. It is important to
include stagnation flow effects at the tip point of the
fin in either conventional heat transfer problems or
conjugate problems.

A generalized Falkner-Skan flow derivation is used
to analyze a stagnation flow (shape factor § = 1.0) at
the fin tip and a flat-plate flow (§ = 0) on fin surfaces.
A second-order accurate finite difference method is
used to obtain solutions of these equations. Com-
paring f5(0) and f7(0) to results of [5] at various
values of f showed a good agreement and these values
are listed in Table 1. Also, computed values of 770
at various values of Pr for flat-plate flow are consistent
with Ref. [28], and are listed in Table 2. These tables
indicated that the present results are correct, and the
numerical method used is adequate.

For the stagnation flow, self-similar solutions for
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1 T T . .
o0.9f EXACT -
0.8 h=25.
0.7} F-D (NCC=0.5) +
0.6 F-D (NCC=1.0)*
& 05F F-D (NCC=2.0) 0
0.4 F-D (NCC=5.0) x
0.3
0.2
0.1
% 01 02 . ] o. =
Fig.

0.9} EXACT
0.8} h =50.
07} F-D (NCC=0.5) +
0.6f F-D (NCC=1.0) *
w 0.5} F-D (NCC=2.0) 0

0.4 F-D (NCC=5.0) x
0.3
0.2

0.1

0.4

0.5

X

Fig. 3. Fin temperature distributions computed from FDE and exact solution for A = 50.0.

flow and temperature fields are obtained, and com-
puted values of TT vs the elastic number E with the
Prandtl number Pr = 1.0, 10.0, 100.0 are shown in
Fig. 4. Variations indicated that 77T is linear pro-
portional to the elastic number E and values of TT
are larger with a larger Prandtl number. Also, vari-
ations in TT vs the Prandtl number with the elastic
number E = 0.3, 0.1, 0.001 are shown in Fig. 5. Fig-
ures 4 and 5 all indicate that a larger temperature
gradient is present with a larger elastic number and
the Prandtl number.

Figures 6 and 7, like Figs 4 and 5, illustrate the
relationships among 77, Pr and E for the flat-plate
flow field (f = 0) at the location X = 0.1. A linear
relationship between TT and E is shown in Fig. 6.
Both Figs 6 and 7 indicate that values of TT are larger
with a medium value of Pr. Variations of TT along
the flat plate with Pr =1.0 and E= 0.1, 0.2, 0.3 are
shown in Fig. 8. A stronger local effect is shown at
locations near the fin tip. The present local similar
solution approaches self-similar behavior at locations
X > 0.3. Numerical values of f5(0), g5(£,0), f1(0),
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Table 1. f§ and £ vs §

0(0) Present f10) Present
B Ref. [5] solution Errors Ref. [5] solution Errors
0.05 0.5311 0.5312 0.0001 0.8214 0.8278 0.0064
0.10 0.5870 0.5871 0.0001 0.5296 0.5279 0.0017
0.20 0.6867 0.6869 0.0002 0.3009 0.2985 0.0024
0.30 0.7748 0.7751 0.0003 0.1418 0.1401 0.0017
0.40 0.8544 0.8548 0.0004 —0.0112 —0.0123 0.0011
0.50 0.9277 0.9282 0.0005 —0.1708 —0.1717 0.0035
0.60 0.9958 0.9965 0.0007 -0.3409 —0.3419 0.0010
(.80 1.1202 1.1211 0.0005 —~0.7164 —0.7181 0.0017
1.00 1.2326 1.2337 0.0011 —1.1390 —1.1420 0.0030
1.20 1.3357 1.3371 0.0014 —1.6064 —1.6112 0.0048
1.60 1.5215 1.5234 0.0019 —2.6641 —2.6744 0.0003
Table 2. T70 vs Pr (f = 0.0) Variations in the local heat-transfer coefficient (/)
along the fin with N_. = 0.5, 1.0, 1.5 and 2.0 are shown
TT0 TTO . ) . .
Pr Ref. [28] present Errors in Figs 9-12, respec'tlvely. Computatlons.of the local
heat transfer coefficient are made by combining a stag-
0.3 0.2148 0.2207 0.0059 nation flow at the fin tip and a flat-plate flow on side
0.6 0.2770 0.2777 0.0007 surfaces of the fin. Results show that the local heat
0.712 0.2955 0.2960 0.0005 transfer coefficient and heat transfer increase dra-
1.0 0.3321 0.3323 0.0002 . R . .
20 0.4223 0.4227 0.0004 matlcally'near the fin tip. It al.so.pomts out that using
3.0 0.4850 0.4856 0.0006 a stagnation flow at the fin tip is much closer to the
6.0 0.6133 0.6145 0.0012 physical situations of the present problem. The value
10.0 0.7281 0.7304 0.0013 of the conjugate approach is clearly demonstrated
30.0 1.0517 1.0602 0.0085 by using a stagnation flow as an end condition. In
60.0 1.3255 1.3459 0.0204 ... .. .
100.0 15718 1.6106 0.0388 addition, these figures indicate that higher E values

gi(&,0), 6/(,0), TTO, TT1 and TT for stagnation
flow field (f = 1.0) and flat-plate flow field (8 = 0.0,
& =12) vs Pr and E are listed in Tables 3-6, respec-
tively. These values vs locations X for flat-plate flow
(from local similar solution) are listed in Table 7.

can enhance the heat transfer performance (higher
local heat transfer coefficient) no matter how the N
varies. However, variations of N from 0.5 to 2.0
have insignificant effects on the local heat transfer
coefficient.

The conjugate fin temperature distributions along
the fin with E = 0.001, 0.01 and 0.1 are shown in Figs
13-15, respectively. The tip temperature is lower and

Beta=1.0

PR=1.0 +
PR=10.0*
PR=100. o

0 1 S | - 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
E

Fig. 4. TTvs E for f = 1.0, Pr = 1.0, 10.0 and 100.0.
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6 T T T T

T T T T T

Beta=1.0
(E=0.3 )+
(E=0.1 )* K
(E=0.001) o
0 1 H 1 1 L 1 . R 1
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Fig. 6. TT vs Efor = 0.0, X = 0.1, Pr = 1.0, 10.0 and 100.0.

temperature gradients along the fin are higher with
larger values of N, and E. These figures again indicate
that the elastic nature of the fluid and a higher con-
ductivity of the fin material can enhance the heat
transfer performance of the fin.

4. CONCLUSION

In the present study, a second-grade viscoelastic
fluid flow has been introduced into analyses of a con-
jugate heat transfer problem of conduction in a solid
flat-plate fin and a forced convection in flow. The

present conjugate problem is a hybrid system of the
ordinary convective problem with a constant wall tem-
perature. A local heat transfer coefficient is obtained
from numerical solutions. Other features in the study
included are a generalized Falkner-Skan flow deri-
vation, and a stagnation flow field at fin tip and a flat-
plate flow on fin surfaces.

Numerical results in the present study indicate that
elastic effect E in the flow can increase the local heat
transfer coefficient and enhance the heat transfer of a
fin. Also, the same as the results from Newtonian fluid
flow and conduction analysis of a fin, a better heat
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Table 3. TT, TT0 and TT1 vs Pr for stagnation flow field (8 = 1.0, E = 0.001)
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Pr 3(0) 90(0) T19 S0 AV TT1 &0 T
0.1 1.2337 —0.2442 0.2442 —1.1420 —10.6862 10.6862 —0.2549 0.2549
0.2 1.2337 —0.3033 0.3033 —1.1420 —10.6584 10.6584 —-0.3139 0.3139
0.3 1.2337 —0.3538 0.3538 —1.1420 —10.6312 10.6312 —0.3645 0.3645
0.5 1.2337 —0.4344 0.4344 —1.1420 —10.5802 10.5802 —0.4450 0.4450

—-0.7 1.2337 —0.4972 0.4972 —1.1420 —10.5346 10.5346 —-0.5077 0.5077
1.0 1.2337 —0.5723 0.5723 -1.1420 —10.4759 10.4759 —0.5828 0.5828
5.0 1.2337 —1.0524 1.0524 —1.1420 —10.0690 10.0690 —1.0625 1.0625

10.0 1.2337 —1.3578 1.3578 —1.1420 —9.8073 9.8073 -1.3677 1.3677

20.0 1.2337 —1.7521 1.7521 —1.1420 —-9.4972 9.4972 —1.7616 1.7616

30.0 1.2337 —2.0378 2.0378 —1.1420 —9.2988 9.2988 —2.0471 2.0471

50.0 1.2337 —2.4759 2.4759 —1.1420 —9.0380 9.0380 —2.4850 2.4850

100.0 1.2337 —3.2688 3.2688 —1.1420 —8.6760 8.6760 —3.2775 3.2775
Table 4. TT, TT0 and TT1 vs Pr flat-plate flow field (§ = 0, E=0.001, X = 0.5, { = 2)

Pr 3(0) 94(0) 70 7(0) AW T &0 T
0.1 0.4696 —0.2424 0.1714 5.1602 —18.5369 13.1075 —0.2610 0.1845
0.2 0.4696 —0.2789 0.1972 5.1602 -30.2570 21.3949 —0.3092 0.2186
03 0.4696 —0.3121 0.2207 5.1602 —45.2937 32.0275 —0.3574 0.2527
0.5 0.4696 —0.3686 0.2607 5.1602 —74.8492 52.9264 —0.4435 0.3136
0.7 0.4696 —0.4145 0.2931 5.1602 —98.3691 69.5574 —-0.5129 0.3627
1.0 0.4696 —0.4699 0.3323 5.1602 —124.9733 88.3695 —0.5949 0.4207
5.0 0.4696 —0.8170 0.5777 5.1602 —270.1608  191.0325 —1.0871 0.7687

10.0 0.4696 —1.0329 0.7304 5.1602 —312.8194  221.1967 —1.3457 0.9516

20.0 0.4696 —1.3061 0.9235 5.1602 —320.7817  226.8269 —1.6269 1.1504

30.0 0.4696 —1.4993 1.0602 5.1602 —312.1334  220.7116 —1.8115 1.2809

50.0 0.4696 —1.7868 1.2634 5.1602 —292.7731  207.0219 —-2.0795 1.4705

100.0 0.4696 —2.2778 1.6106 5.1602 —260.2552  184.0282 —2.5381 1.7947
Table 5. 8, TT0 and TT1 vs E for stagnation flow field (8 = 1.0, Pr = 1.0)

E o(0) 90(0) 70 S0 g:(0) Tl 6'(0) T
0.001 1.2337 —0.5723 0.5723 —~1.142 —-10.4759 10.4759 —0.5828 0.5828
0.003 1.2337 —0.5723 0.5723 —1.142 —10.4759 10.4759 —0.6037 0.6037
0.005 1.2337 —~0.5723 0.5723 —~1.142 —10.4759 10.4759 —0.6247 0.6247
0.008 1.2337 —0.5723 0.5723 —1.142 —10.4759 10.4759 —0.6561 0.6561
0.010 1.2337 —0.5723 0.5723 -1.142 —10.4759 10.4759 —0.6770 0.6770
0.030 1.2337 —0.5723 0.5723 ~1.142 —10.4759 10.4759 —0.8866 0.8866
0.050 1.2337 —~0.5723 0.5723 —1.142 —-10.4759 10.4759 —1.0961 1.0961
0.080 1.2337 —~0.5723 0.5723 —~1.142 —10.4759 10.4759 —1.4104 1.4104
0.100 1.2337 —0.5723 0.5723 —1.142 —10.4759 10.4759 —1.6199 1.6199
0.150 1.2337 —0.5723 0.5723 ~1.142 —10.4759 10.4759 —2.1437 2.1437
0.200 1.2337 —0.5723 0.5723 ~1.142 —10.4759 10.4759 —2.6675 2.6675
0.300 1.2337 —-0.5723 0.5723 —~1.142 —10.4759 10.4759 —3.7151 3.7151




1098

C.-H. HSU and K.-L. HSIAO

Table 6. Field T7, TT0 and T71 vs E flat-plate flow (8 = 0.0, Pr= 1.0, X = 0.5, { = 2)

E 0 (0) g46(0) 770 f1(0) FAW] 71 '(0) T
0.001 0.4696 —0.4699 0.3323 5.1602 —1249733  88.3695 —0.5949 0.4207
0.003 0.4696 —0.4699 0.3323 5.1602 ~124.9733  88.3695 —0.8449 0.5974
0.005 0.4696 —0.4699 0.3323 5.1602 —124.9733  88.3695 —1.0948 0.7741
0.008 0.4696 —0.4699 0.3323 5.1602 —124.9733  88.3695 —1.4697 1.0393
0.010 0.4696 —0.4699 0.3323 5.1602 —124.9733  88.3695 —1.7197 1.2160
0.030 0.4696 —0.4699 0.3323 5.1602 —124.9733  88.3695 —4.2191 29834
0.050 0.4696 —0.4699 0.3323 5.1602 —1249733  88.3695 —6.7186 4.7508
0.080 0.4696 —0.4699 0.3323 5.1602 —1249733  88.3695 —10.4678 7.4019
0.100 0.4696 —0.4699 0.3323 5.1602 —124.9733  88.3695 —12.9673 9.1692
0.150 0.4696 —0.4699 0.3323 5.1602 —1249733  88.3695 —19.2159 13.5877
0.200 0.4696 —0.4699 0.3323 5.1602 —1249733  88.3695 —25.4646 18.0062
0.300 0.4696 —0.4699 0.3323 5.1602 —124.9733  88.3695 —37.9619 26.8431

Table 7. Flat-plate flow field 77, TT0 and TT1 vs X at the wall (§ = 0.0, Pr = 1.0, £ = 0.001)

X f3(0) 90(0) T70(0) S1(0) 71(0) TT1(0) 8(0) 77(0)
0.04 0.4696 —0.4699 0.3323 5.1602 —249832  17.6658 —0.4949 0.3500
0.08 0.4696 —0.4699 0.3323 5.1602 -79.3257  56.0917 —0.5493 0.3884
0.10 0.4696 —0.4699  0.3323 5.1602 —90.1942  63.7769 —0.5601 0.3961
0.20 0.4696 —0.4699 0.3323 5.1602 —111.9311  79.1473 —0.5819 0.4114
0.30 0.4696 ~0.4699 0.3323 5.1602 ~119.1768  84.2707 —0.5891 0.4166
0.40 0.4696 —0.4699 0.3323 5.1602 —122.7996  86.8324 —0.5927 0.4191
0.50 0.4696 —0.4699 0.3323 5.1602 —1249733  88.3695 —0.5949 0.4207
0.60 0.4696 —0.4699 0.3323 5.1602 —126.4225  89.3942 —~0.5964 0.4217
0.70 0.4696 —0.4699 0.3323 5.1602 —127.4575  90.1261 —0.5974 0.4224
0.80 0.4696 —0.4699 0.3323 5.1602 —128.2339  90.6750 —0.5982 0.4230
0.90 0.4696 —0.4699 0.3323 5.1602 —128.8377  91.1020 —0.5988 0.4234
1.00 0.4696 —0.4699 0.3323 5.1602 —129.3207  91.4436 —0.5993 0.4237
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Fig. 9. Local convective heat transfer coefficient distributions for N, = 0.5, 8 = 0.0, and E = 0.001, 0.01

and 0.1.
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Fig. 12. Local convective heat transfer coefficient distributions for N = 2.0, B = 0.0, and E = 0.001, 0.01
and 0.1.
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Fig. 13. Conjugate fin temperature distributions for E = 0.001, N, = 0.5, 1.0, 1.5 and 2.0.
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transfer is obtained with a larger N, and a larger Pr.
With some modifications, the present method can be
applied to the conjugate problems with other bound-
ary-layer flow fields.

12,
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